3.1389 \(\int \frac {1}{x^{13} \sqrt {2+x^6}} \, dx\)

Optimal. Leaf size=58 \[ \frac {\sqrt {x^6+2}}{32 x^6}-\frac {\tanh ^{-1}\left (\frac {\sqrt {x^6+2}}{\sqrt {2}}\right )}{32 \sqrt {2}}-\frac {\sqrt {x^6+2}}{24 x^{12}} \]

[Out]

-1/64*arctanh(1/2*(x^6+2)^(1/2)*2^(1/2))*2^(1/2)-1/24*(x^6+2)^(1/2)/x^12+1/32*(x^6+2)^(1/2)/x^6

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {266, 51, 63, 207} \[ \frac {\sqrt {x^6+2}}{32 x^6}-\frac {\sqrt {x^6+2}}{24 x^{12}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {x^6+2}}{\sqrt {2}}\right )}{32 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^13*Sqrt[2 + x^6]),x]

[Out]

-Sqrt[2 + x^6]/(24*x^12) + Sqrt[2 + x^6]/(32*x^6) - ArcTanh[Sqrt[2 + x^6]/Sqrt[2]]/(32*Sqrt[2])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^{13} \sqrt {2+x^6}} \, dx &=\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x^3 \sqrt {2+x}} \, dx,x,x^6\right )\\ &=-\frac {\sqrt {2+x^6}}{24 x^{12}}-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {2+x}} \, dx,x,x^6\right )\\ &=-\frac {\sqrt {2+x^6}}{24 x^{12}}+\frac {\sqrt {2+x^6}}{32 x^6}+\frac {1}{64} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {2+x}} \, dx,x,x^6\right )\\ &=-\frac {\sqrt {2+x^6}}{24 x^{12}}+\frac {\sqrt {2+x^6}}{32 x^6}+\frac {1}{32} \operatorname {Subst}\left (\int \frac {1}{-2+x^2} \, dx,x,\sqrt {2+x^6}\right )\\ &=-\frac {\sqrt {2+x^6}}{24 x^{12}}+\frac {\sqrt {2+x^6}}{32 x^6}-\frac {\tanh ^{-1}\left (\frac {\sqrt {2+x^6}}{\sqrt {2}}\right )}{32 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 30, normalized size = 0.52 \[ -\frac {1}{24} \sqrt {x^6+2} \, _2F_1\left (\frac {1}{2},3;\frac {3}{2};\frac {x^6}{2}+1\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^13*Sqrt[2 + x^6]),x]

[Out]

-1/24*(Sqrt[2 + x^6]*Hypergeometric2F1[1/2, 3, 3/2, 1 + x^6/2])

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 52, normalized size = 0.90 \[ \frac {3 \, \sqrt {2} x^{12} \log \left (\frac {x^{6} - 2 \, \sqrt {2} \sqrt {x^{6} + 2} + 4}{x^{6}}\right ) + 4 \, {\left (3 \, x^{6} - 4\right )} \sqrt {x^{6} + 2}}{384 \, x^{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^13/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

1/384*(3*sqrt(2)*x^12*log((x^6 - 2*sqrt(2)*sqrt(x^6 + 2) + 4)/x^6) + 4*(3*x^6 - 4)*sqrt(x^6 + 2))/x^12

________________________________________________________________________________________

giac [A]  time = 0.16, size = 59, normalized size = 1.02 \[ \frac {1}{128} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - \sqrt {x^{6} + 2}}{\sqrt {2} + \sqrt {x^{6} + 2}}\right ) + \frac {3 \, {\left (x^{6} + 2\right )}^{\frac {3}{2}} - 10 \, \sqrt {x^{6} + 2}}{96 \, x^{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^13/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

1/128*sqrt(2)*log(-(sqrt(2) - sqrt(x^6 + 2))/(sqrt(2) + sqrt(x^6 + 2))) + 1/96*(3*(x^6 + 2)^(3/2) - 10*sqrt(x^
6 + 2))/x^12

________________________________________________________________________________________

maple [A]  time = 0.02, size = 51, normalized size = 0.88 \[ \frac {\sqrt {2}\, \ln \left (\frac {\sqrt {x^{6}+2}-\sqrt {2}}{\sqrt {x^{6}}}\right )}{64}+\frac {3 x^{12}+2 x^{6}-8}{96 \sqrt {x^{6}+2}\, x^{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^13/(x^6+2)^(1/2),x)

[Out]

1/96*(3*x^12+2*x^6-8)/x^12/(x^6+2)^(1/2)+1/64*2^(1/2)*ln(((x^6+2)^(1/2)-2^(1/2))/(x^6)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 2.30, size = 74, normalized size = 1.28 \[ \frac {1}{128} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - \sqrt {x^{6} + 2}}{\sqrt {2} + \sqrt {x^{6} + 2}}\right ) - \frac {3 \, {\left (x^{6} + 2\right )}^{\frac {3}{2}} - 10 \, \sqrt {x^{6} + 2}}{96 \, {\left (4 \, x^{6} - {\left (x^{6} + 2\right )}^{2} + 4\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^13/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

1/128*sqrt(2)*log(-(sqrt(2) - sqrt(x^6 + 2))/(sqrt(2) + sqrt(x^6 + 2))) - 1/96*(3*(x^6 + 2)^(3/2) - 10*sqrt(x^
6 + 2))/(4*x^6 - (x^6 + 2)^2 + 4)

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 57, normalized size = 0.98 \[ \frac {\frac {5\,\sqrt {x^6+2}}{48}-\frac {{\left (x^6+2\right )}^{3/2}}{32}}{4\,x^6-{\left (x^6+2\right )}^2+4}-\frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {x^6+2}}{2}\right )}{64} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^13*(x^6 + 2)^(1/2)),x)

[Out]

((5*(x^6 + 2)^(1/2))/48 - (x^6 + 2)^(3/2)/32)/(4*x^6 - (x^6 + 2)^2 + 4) - (2^(1/2)*atanh((2^(1/2)*(x^6 + 2)^(1
/2))/2))/64

________________________________________________________________________________________

sympy [A]  time = 4.15, size = 66, normalized size = 1.14 \[ - \frac {\sqrt {2} \operatorname {asinh}{\left (\frac {\sqrt {2}}{x^{3}} \right )}}{64} + \frac {1}{32 x^{3} \sqrt {1 + \frac {2}{x^{6}}}} + \frac {1}{48 x^{9} \sqrt {1 + \frac {2}{x^{6}}}} - \frac {1}{12 x^{15} \sqrt {1 + \frac {2}{x^{6}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**13/(x**6+2)**(1/2),x)

[Out]

-sqrt(2)*asinh(sqrt(2)/x**3)/64 + 1/(32*x**3*sqrt(1 + 2/x**6)) + 1/(48*x**9*sqrt(1 + 2/x**6)) - 1/(12*x**15*sq
rt(1 + 2/x**6))

________________________________________________________________________________________